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Magnetic properties of quantum dots and rings

M. Manninen1,a, M. Koskinen1, S.M. Reimann2, and B. Mottelson3
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Abstract. Exact many-body methods as well as current-spin-density functional theory are used to study the
magnetism and electron localization in two-dimensional quantum dots and quasi-one-dimensional quantum
rings. Predictions of broken-symmetry solutions within the density functional model are confirmed by
exact configuration interaction (CI) calculations: In a quantum ring the electrons localize to form an
antiferromagnetic chain which can be described with a simple model Hamiltonian. In a quantum dot the
magnetic field localizes the electrons as predicted with the density functional approach.

PACS. 73.21.La Quantum dots – 73.43.Nq Quantum phase transitions – 85.35.Be Quantum well devices
(quantum dots, quantum wires, etc.)

1 Introduction

The electronic structure of quantum dots has been an ex-
tensive area of research during the last decades [1]. The
simple harmonic confinement modeling a quantum dot
makes the system especially well suited for applying shell
model techniques: The center of mass motion exactly sep-
arates out and, on the other hand, a harmonic oscillator
basis is a natural starting point [2] for many-body calcu-
lations.

When the local spin density approximation has been
used to study Hund’s rule and the magnetic structure of
quantum dots [3], it has been observed that broken sym-
metry solutions can result. Static spin-density waves of the
ground states [3] and the localization caused by a strong
magnetic field [4] have, however, been disputed [5,6] as
being artifacts of mean field theory since the circular sym-
metry of the exact Hamiltonian was broken.

In this paper we will first study the spin-density wave
in a six electron quantum ring and show that the re-
sult of an exact many-body calculation can be mapped
to a model Hamiltonian consisting of an antiferromag-
netic Heisenberg Hamiltonian, combined with rigid rota-
tions and vibrations. This result confirms the existence of
the spin-density wave observed earlier using the local spin
density approximation [3,8]. We then study Hund’s rule
and electron localization of a four electron quantum dot
as a function of the electron density. Finally, we will com-
pare the results of exact calculations for six electron dots
in magnetic field with those obtained with the current-
spin-density formalism, as it originally was developed by
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Vignale and Rasolt [7]. For a non-circular dot, we are able
to observe the localization caused by a strong magnetic
field also in the exact electron density.

2 The model

The electrons are restricted to move in a plane and con-
fined by an external potential (in atomic units)

V (r) =
1
2
ω0(r − r0)2, (1)

where ω0 is the strength of the confinement and r0 the
radius of the quantum ring (r0 = 0 for a quantum dot).
The electrons interact with each other with the normal
1/r Coulomb interaction. The many-body Hamiltonian is
diagonalized using a configuration-interaction (CI) tech-
nique. The spatial single-particle states of the Fock space
are chosen to be eigenstates of the single particle part of
the Hamiltonian. We expand them in the harmonic os-
cillator basis. From 30 to about 50 lowest energy single-
particle states are selected to span the Fock space. To set
up the Fock states for diagonalization, we sample over the
full space with a fixed number of spin down and spin up
electrons. Only those states with a given total orbital an-
gular momentum and configuration energy (corresponding
to the sum of occupied single-particle energies) less than
a specific cut-off energy are selected. The purpose was to
choose only the most important Fock states from the full
basis and hereby reducing the matrix dimension to a size
< 2 × 105. In the case of a deformed quantum dot in a
magnetic field the restriction of the orbital angular mo-
mentum could of course not be used.
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Fig. 1. Many-body spectra of a quantum ring with N = 6
electrons (rs,1D = 2 a.u. and CF = 4). The energy difference
between the yrast states for L = 0 and L = 6 is 0.143 a.u. The
spin S is given for the low-lying states.

The Coulomb integrals between the single particle
states were calculated with a numerical integration in a
lattice with an accuracy better than 1%. The Hamilto-
nian matrix was diagonalized with the Arpack library [11]
suitable for large sparce matrices.

3 Quantum ring with six electrons

Figure 1 shows the many-body energy spectrum of a quan-
tum ring with six electrons for the potential of Eq. (1) with
parameters ω0 = 0.308 a.u. and r0 = 3.82 a.u. (we use
atomic units a.u. for simplicity). These parameters cor-
respond to a one-dimensional density parameter rs,1D =
2 a.u. which describes the particle density nr = 1/(2rs,1D)
along the ring, and CF = 4, a dimensionless parameter
that measures the degree of one-dimensionality. CF es-
sentially describes the excitation energy of the next radial
mode ~ω0, which is defined to be CF times the (1D) Fermi
energy. We thus obtain ~ω0 = CF ~2π2/(32m∗r2

s,1D). The
higher the value of CF , the more the radial modes are
frozen in their ground states. Thus, the ring is narrower
for larger CF (see also Ref. [12].) It is clear from the figure
that a band of energy levels separates out from higher en-
ergy levels. This band has a six-fold periodicity in the or-
bital angular momentum M . The lowest levels at M = 0,
M = 1, and M = 2 have the same total spin and level
spacing as the levels corresponding to M = 6, M = 5,
and M = 4, respectively. This band of lowest states for a
given angular momentum (which is also called the “yrast”
band after the Swedish word for the “most dizzy”) can be
understood with a simple model Hamiltonian describing
localized spins in a rotating and vibrating “molecule”:

H = J
∑
i,j

Si · Sj +
1
2I
M2 +

∑
a

~ωana, (2)

where the fist term is an antiferromagnetic Heisenberg
Hamiltonian of localized electrons with nearest neighbor

coupling J , the second term describes rigid rotations of a
ring of electrons with a moment of inertia I, and the last
term describes the vibrational modes of the localized elec-
trons. In Fig. 1 the band gap is that between the lowest
and the first excited vibrational state. The spin-structure
of the lowest vibrational band is identical to that ob-
tained by diagonalization of the Heisenberg Hamiltonian.
(Group-theoretical methods were used to assign the spin-
configuration to the orbital angular momentum so that
the total wave function has the right symmetry [12]).

In the case of a narrower ring, also the higher vibra-
tional states will separate to individual bands and the en-
ergy differences between the different vibrational bands
agree well to those calculated from the classical model
of six vibrating electrons in a potential of the form of
Eq. (1) [12].

4 Quantum dot with four electrons

The rotational spectrum gives a clear signature of local-
ization of electrons in the case of a quantum ring. We
examined if the same is true also in the case of a quan-
tum dot, as it was recently conjectured [13,14]. For a
six-electron quantum dot, it was found earlier that at
rs,2D = 4 a.u., the many-body ground state has total spin
S = 0 and shows antiferromagnetic order in the pair cor-
relation. The polarized state and the state with S = 1,
both having C5v symmetry and being candidates for the
classical ground state configuration [15,16] with five par-
ticles localized around one particle in the dot center, were
clearly higher in energy [17]. The situation is different,
however, for N < 5. Here, we discuss a dot and ring con-
fining four electrons, where the classical Wigner molecule
only has one stable configuration, a square of electrons.
Note that already in the case of six electrons there are
two stable classical Wigner molecules, which will make
the analysis of the quantum mechanical excitation spec-
tra much more complicated. Figure 2 shows the excitation
spectra of a quantum dot with four electrons and, for com-
parison, those of a ring with four electrons. It is seen that
the spectra are qualitatively very similar. In the case of the
ring the spectrum can again nearly exactly be described
with the Hamiltonian (2), and it has a period of four as
a function of the angular momentum (due to the 4-fold
symmetry of the square). In the case of the dot, the only
qualitative difference is that at M = 4 the spin of the two
lowest states is the opposite than for M = 0. Neverthe-
less, the similarity of the spectra suggest that with this
density of rs,2D = 4 a.u. the four electrons in the dot are
already nearly localized. The difference of the ring and
dot spectra is a result of different vibrational states. Ra-
dial oscillations are allowed in the dot, but forbidden in
the ring.

Figure 2 also shows that the ground state in both cases
has a total spin S = 1 according to the Hund’s first rule,
and in agreement with the results of the local density ap-
proximation [3]. The dependence of the lowest excitation
energies with M = 0 on the electron density (rs,2D) in the
dot is shown in Fig. 3. The relative differences between
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Fig. 2. Rotational spectra (low-lying states) for a quantum
dot confining 4 electrons (rs,2D = 4a∗B) (upper panel) and a
ring (rs,1D = 2a∗B and CF = 10), each confining four electrons.
The energies are rescaled for comparison; the energy difference
between the yrast states for L = 0 and L = 4 is for the dot
0.069 a.u. and for the ring 0.287 a.u., respectively.
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Fig. 3. Lowest excited M = 0 states as a function of the elec-
tron density parameter rs,2D for a quantum dot with four elec-
trons. The ground state has spin S = 1 and the excited states
shown in the plot have spin values S = 0, 2, 1, 0 (with increas-
ing energy). The energies are given in units of the density-
dependent shell ~ω0 (ω2

0 = 1/r3
s,2DN

1/2).

the energy levels stay the same when the density parame-
ter has reached a value of about rs,2D = 2 a.u. indicating
that the electron localization in this small system start at
a quite high electron density. The ground state remains to
be the S = 1 state at least up to rs,2D = 6 a.u. It should be
noted that at large rs values (rs,2D = 3 a.u.) the M = 1,
S = 0 state will be essentially degenerate with the lowest

excited M = 0 state shown in Fig. 3. The observation of
the Hund’s rule (S = 1) for the four electron dot seems
to contradict CI calculations with much smaller basis [9],
but is in agreement with a recent quantum Monte Carlo
calculation [10].

5 Localization of electrons in a strong
magnetic field

In a strong magnetic field the electron gas in the quantum
dot can polarize and form a so-called maximum density
droplet (MDD) [18]. The current-spin-density functional
formalism [4] and the Hartree-Fock approximation [19]
predict that when the magnetic field is further increased,
the electrons start to localize and localization begins at
the edge of the dot. (However, this localization process
in principle is of different character than the formation of
Wigner molecules discussed above.)

An exact many-body solution will, also in this case,
naturally result in a circularly symmetric electron density
and not show this internal localization. The above method
of studying the excitation spectrum could also be used in
this case to demonstrate the localization. In this study we
have, however, chosen another way. We break the sym-
metry of the Hamiltonian and study deformed, i.e. ellip-
soidal, quantum dots with six electrons in a strong mag-
netic field. The exact many-body problem is again solved
using the CI technique, which in this case is much more
demanding since the orbital angular momentum no longer
is a good quantum number. Consequently, the convergence
checks show that numerical accuracy of the results is not
as good as for the results shown earlier. Nevertheless, we
are convinced that the qualitative features of the electron
density do not change if the accuracy is increased.

Figure 4 shows the electron densities of circular dots,
and Figure 5 the densities of deformed quantum dots
confining six electrons, both computed by using the CI
method. A comparison to the results obtained in CSDFT
confirmed that the maximum density droplet with nearly
constant density is obtained at about the same values of
the magnetic field both in the CI and CSDFT formalism.
When the magnetic field is increased beyond stability of
the MDD, the density functional method gives a result
showing six maxima corresponding to quasi-localized elec-
trons. The total density of the CI method can show the
localization only in the case of the deformed dot. In this
case the density is indeed very similar to the result of the
CSDFT.

For the circular dot the CI method naturally gives a
symmetric solution, while the CSDFT, as a mean field
theory, shows the internal symmetry of the state. It should
be noted that in the case of the circular dot the ground
state of the CSDFT corresponds to the first excited state
of the exact calculation, which has one electron in the
center of the dot surrounded by a ring of five electrons.
The ground state of the CI result corresponds to a single
ring of six electrons. Classically, six electrons localized in a
circular quantum dot have these two stable configurations
with a very small energy difference.
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Fig. 4. Electron densities in circular quantum dots confining
six electrons. In the upper panel, the magnetic field is B =
0.9 a.u. and the state is a maximum density droplet. In the
middle and lower panel, B = 1.2 a.u.

6 Conclusions

We showed that the best way to obtain information of
internal electron localization in quantum dots and rings
is to study the rotational excitation spectrum. When
mapped on a model Hamiltonian of an antiferromagnetic
Heisenberg lattice of electrons (with rigid rotations and
vibrations), the internal structure of the many-body spec-
trum close to the yrast line can be understood.
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Fig. 5. Electron densities ellipsoidally deformed dots confining
six electrons. The magnetic field is B = 0.9 a.u. in the upper
panel and B = 1.2 a.u. in the lower panel.

In the case of quantum dots the study of the excitation
spectrum is more complicated due to the low energy vibra-
tional modes of the localized electrons. When the electron
number increases, also the possibility of several local min-
ima of the classical Wigner molecule makes the quantum
mechanical excitation spectrum more complicated. Nev-
ertheless, our results indicate that in the case of a four-
electron dot the electrons start to localize at quite high
electron densities, already when rs,2D ≈ 3 a.u.

Localization of electrons in a strong magnetic field is
demonstrated by breaking the circular symmetry of the
quantum dot. In an ellipsoidal quantum dot the exact
electron density of six electrons shows clear localization of
electrons in agreement with the results of more approxima-
tive methods like Hartree-Fock and current-density func-
tional theory.
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